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S U M M A R Y  
The conical solutions for the incidence of a plane pulse on a three-dimensional corner are presented. The corner is 
represented by a trihedron with one edge perpendicular to the other two. Both the boundary condition of the first kind, 
p = 0, and that of the second kind, @/On = 0, are considered. Outside the characteristic sphere of the vertex of the corner, 
the solution is represented by the well known conical solutions in two variables. Inside the characteristic sphere, the 
problem involves three conical variables. By the separation of variables, the problem is reduced to that of an eigen- 
value problem with an irregular boundary which is in turn reduced to a system of homogeneous algebraic equations. 
The eigenvalues are then determined numerically. By the superposition of the conical solutions for plane pulses, the 
solution for the incidence of a plane wave is obtained. Numerical examples simulating the incidence of a sonic boom on 
the corner of a structure are presented. 

1. Introduction 

The problem of diffraction and reflection of acoustic waves or electromagnetic waves by wedges, 
corners and other two-dimensional or axially symmetric obstacles has received extensive in- 
vestigations. A survey of these investigations can be found in [1]. 

A canonical two-dimensional problem is the diffraction of a plane pulse by a wedge or corner. 
Explicit solutions in terms of elementary functions were obtained by Keller and Blank [2] for 
the boundary condition of the first kind, p = 0, and for that of the second kind, @/~n = 0. The 
corresponding solutions are applicable respectively to a single component of electric field or 
magnetic field with a perfect conducting wedge or corner. They are also applicable to acoustic 
pressure with free or rigid walls respectively. The explicit solutions are obtainable because (i) 
the absence of a length scale allows the reduction of three variables x, y, t to two conical vari- 
ables x/t and y/t, (ii) the law of propagation of discontinuities [3] converts the initial boundary 
value problem to a boundary value problem in conical variables, and (iii) the Busemann conical 
transformation [4] converts the governing equation to Laplace equation and allows the use of 
conformal mapping. 

In this paper, the solution for a canonical three-dimensional diffraction problem is presented. 
The problem is the diffraction of a plane pulse by a three-dimensional corner. Both the boundary 
condition of the first kind and that of the second kind will be considered. The corner is represent- 
ed by a trihedron with one edge perpendicular to the other two. The corner of a cube is a special 
example. Due to the absence of a length scale for a trihedron, the solutions is conical in three 
variables ~ = r/(Ct), 0 and ~o where r, 0, ~o are the spherical coordinates with origin located at the 
vertex of the trihedron. For a trihedron the three-dimensional effect is confined inside the 
characteristic sphere r = Ct or the unit sphere ~ = 1. Outside the unit sphere, the solution is two- 
dimensional and can be represented by the known conical solutions in two variables [2]. 
From the law of propagation of discontinuities [3], the solution outside the unit sphere pro- 
vides the boundary data on the unit sphere and the original initial boundary value problem 
of the three-dimensional wave equation is converted to a boundary value problem in conical 
variables ~, q~ and 0 in section 2. The geometrical restriction that one edge of the trihedron is 
perpendicular to the other two enables the separation of the variable ~ from 0 and q~ and the 
associated eigenvalue problem in 0-~p plane is defined. 

* This work was supported by NASA Grant No. NGL-33-016-119. 
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In section 3, a procedure is presented such that the eigenvalue problem for either the 
boundary condition of the first kind or of the second kind is reduced to a system of linear 
algebraic equations. Numerical results for the eigenvalues and eigenfunctions are obtained and 
they are applied to construct the conical solution for the diffraction of a plane pulse in section 
4. By the decomposition of a plane wave to plane pulses, the diffraction of a plane wave by a 
three-dimensional corner is presented in section 5. 

2. Formulation of the Three-Dimensional Conical Problem 

For the acoustic disturbance pressure p, or a component of the electric or magnetic field, 
the governing differential equation is the simple wave equation, 

Pxx-l-pyy-[-Pzz-- C-2ptt = 0 (1) 

where C is the speed of propagation in the region outside a trihedron simulating a three- 
dimensional corner. As shown in Fig. 1, two edges, OA and OB, of the trihedron are in the x-y 
plane and are bisected by the negative x-axis with half angle ~ and the third edge OD, which is 
the negative z-axis with the vertex 0 as the origin. Let t = 0 be the instant when the pulse front 
hits the vertex. In order to carry out the formulation for the boundary condition of the first 
kind and of the second kind simultaneously, an index h will be introduced with h = 0, 1 for the 
first and the second kind respectively. The boundary condition on the three faces of the tri- 
hedron is 

~hp/~nh = 0 (2) 

The three-dimensional disturbance due to the vertex is confined inside the sphere r =  Ct 
where r = (x 2 + y2 + z2)~. Outside the sphere, the solution is given either by the regular reflec- 
tion of the plane pulse from the surfaces of the trihedron or by the diffraction of the pulse by the 
edges. When the pulse front is parallel to the edge, the diffracted wave is given by a two-di- 
mensional unsteady conical solution. When the pulse front is not parallel to the edge, the dif- 
fracted wave is given by a steady three-dimensional conical solution. For both cases, solutions 
are given in two conical variables in [2] by means of Busemann's conical flow method. 

Due to the absence of a time scale and a length scale, the disturbance p, non-dimensionalized 
by the strength of the incident pulse, should be a function of three conical variables, x/(Ct), 
y/(Ct) and z/(Ct) or in terms of the spherical coordicates by ( = r/(Ct), 0 and ~0. The simple wave 
equation for p ((, 0, q)) becomes, 

(s @ )  1 0 2 p _  0 (3) O2p ~2, OP 1 ~ in 0 ~  +s in  2 0 (2 (1 - (2) ~ + 2((1 - ~ ) ~ -  + s in~  ~O - -  ~p2 

inside the unit sphere, ( = 1, and exterior to the trihedron. The boundary conditions are : 

Ohp/~Oh = 0 on surface OAB, 0 = re/2, - (re- e) < ~p < re- c~ (4) 

63hp/63~ h --'= 0 on surface OAD, (p = re- ~, re/2 < 0 < rt (5a) 

~?hp/t?~Oh = 0 on surface OBD, (p = - rc + e, 7z/2 < 0 < rc (5b) 

and p=F(O, (p) on unit sphere ( =  1 outside of the trihedron. 

." o ~__j. 

c 

PI.t~IE 

t < o  

Figure 1. Incidence of a plane pulse on a corner. 
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The jump across the sphere is inversely proportional to the square root of the area of the ray 
tube, (dS) ~. Since all the rays reaching the sphere come from the origin where dSo = 0, the jump 
across the sphere is zero. The pressure is continuous across the sphere ff = 1 ; and F(O, go) is 
defined by the solutions outside the sonic sphere in two conical variables given by [2]. 

To construct the solution by the method of separation of variables, the usual trial substitution 
p (~, 0, go) = A (0 G (#, go) is introduced where/l = cos 0 and equation (3) becomes 

~z (1 - ~2)Z,,(0 + 2 (1 - ~ 2 ) ~ Z '  (~) - -  2 (2 -[- 1) Z (~) = 0 (6) 

for 1 > ~ >__ 0, and 

8 [( 2- 8G7 1 ~32G -- 0 (7) 

for the domain in #-go plane with Igo[ < 7t- a when 0 > / l  > - 1, and with Igo[ _-< ~ when 1 > # > 0. 
Since p and also G are single valued, G should be periodic in go when 1 > # > 0, i.e. 

G(#, go+2r 0 : G(#, go). (8) 

The range of go is therefore restricted from - rc to rc and the two ends are connected by the 
periodicity condition. 

The replacement of the variable 0 by # and the use of the constant of separation 2 (2 + 1) are 
motivated by the intention of representing G(/~, 0) by the spherical harmonics. 

The boundary conditions on the surfaces of the trihedron, eq. (4), become 

8hG/8#h:o  along kt=0 with n - a <  Igoi < n  (9a) 

8 h G/Ogo h = 0 along go = _+ (~z - e) with - 1 < # < 0 (9b) 

The condition that p is bounded in particular at the two poles, 0 = 0 and 0 = re, yields the con- 
dition, 

IGI < co at # = _ 1 (9c) 

The periodicity condition, eq. (8), supplies the condition along the remaining boundaries, 

G (#, - ~) = G(#, r 0 and (9d) 

G o (/l, - re) --- G o (#, re) for 1 >/z > 0.  

The differential equation (7) and the boundary conditions (9a-d), define an eigenvalue problem. 
The determination of the eigenvalues, 2's, and the associated eigenfunctions, Gz(#, go) are 
described in the next section. 

3. The Eigenvalue Problem 

For the eigenvalue problem formulated in the preceding section, two edges of the trihedron, 
CA and OB, are assumed to be normal to the third edge. This restriction is imposed due to two 
considerations : (1) the surfaces of the corner can be defined by surfaces of constant 0 or constant 
go's and (2) the solutions outside the unit sphere for the diffraction problem can be constructed 
as solutions of two-dimensional problems [2]. For  the solution of the eigenvalue problem itself 
the second consideration is irrelevant. The eigenvalue problem in'this section will, therefore, 
be formulated for a wider class of corners as shown in Fig. 2. The surface CAB is a conical 
surface with O=fi and the two surfaces CAD and OBD are planes with go=~r-a and go= 
- r~ + a respectively. The boundary conditions for the solution of eq. (7) are 

8hG/8# h = 0 along #=#o=COS fl with n - a  < kol s 7v 

8hG/~go h= 0 along go= ___ (re--a) with - 1  < /Z<po  

IGI< co at # = + 1  
G(#,u)=G(#, -u) ,  Go(#,u)--G~(#, -u )  for p o < # = < l .  

(lOa) 

(lOb) 

(10o) 
(lOd) 
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For the special case of/7 = n/2, or / t  o = 0, the boundary conditions of eqs. (10a-d) and the do- 
main in t h e / t -  ~0 plane (Fig. 2) reduce to those of eqs. (9a-d). 

The eigenvalue problem is now defined by the differential eq. (7) and the boundary conditions 
(10a-d). In order to reduce the problem-to that for a set of algebraic equations, two representa- 
tions of the eigenfunction Gx (/t, ~0) associated with the eigenvalue 2 will be sought ; one for the 
region, R +, with/t > / t  o and the other for R -  with/t < it o (Fig. 2). These two solutions and their 
normal derivatives will be matched across the dividing line # =/to for tq0l < n-c~. 

E 

Y 
--EQ (lOci 

E El F:COSO / E 
EQ O0 d)~ 1 R+ '] V EQ {lOd) 

F p _ _ _ _ _  . _ t _ _  A 
FO: ' EQ(IOo) 

~ ~ 
~EQ IlOel 

Figure 2. Eigenvalue problem for the comer. 

For the upper region R +, the eigenfunction G2- (/t, (p) which is periodic in ~0 on account ofeq. 
(10d) or eq. (8) can be represented by the Fourier series in 4o with period of 2n, 

G + (ix, q)) = ~ A,,p;"(/t) cos mq~ + Z B,,p;"(/t) sin mq). (11) 
r e = O , 1 , . . ,  r e = l , 2 , . . .  

For each m, eq. (7) yields the Legendre equation for p~-m (/t) 

d~ ~ P~-"(/t) + 2(2+1)  1 ~  2 p~-"(#)-- 0 .  (12) 

Since eq. (1 t) is defined for 1 >/t  >__/t0 > - 1, p~- " should be finite at # = 1. p~" is identified as the 
generalized Legendre function [5] and defined by 

= ( 1 - / t ~  "/z e { - 2 ,  2 + 1, 1 + m;  (1 -# ) /2}  (13) P~-" (/t) \ 1 + # /  

where F denotes the Gaussian hypergeometric function. The factor l/F(1 + m) is omitted on the 
right side of eq. (13) since it is automatically absorbed into coefficients A m and B,, with a net 
saving of programming and computing time. 

For the lower region R - ,  i.e., - 1 < / t  </ to the eigenfunction G]-, which fulfills the boundary 
conditions of eqs. (10b and c), can be expressed as a sine or a cosine series in (q)+ re -e )  with 
half period of 2(rc-ct)for h = 0  or 1 respectively, i.e. 

G~ (/t, qo)= Z E, PT("~l~)(-#)sin [n~ @~ + ~)  + n-n-h2 ] 

where q~ = 2 (n - c~) and the summation is over all integers n > 1 - h. Similarly for each n, eq. (7) 
becomes the Legendre equation and P~-"~/e(-/t) is the generalized Legendre function. The 
argument is - # so that the function is finite for - 1 =< # < #o < 1. In the series for G~-, the 
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terms are alternately even and odd functions of q0. The series can be written as the sum of an 
even and an odd series, 

G[(#, q~) = y" CjP[~J(-IO cos vj~0 + 2 DjPz-V~(- #) sin ~jq) (14) 
j=O,1.., j= 1,2... 

where 

v j=  (2j+l-h)Tt/cb, ~i= (2j-h)Tz/4~, C j = E 2 j ( - 1 )  j and Dj=E2j_I( -1) ; .  

Both expressions (11) and (14) fulfill the differential equation (7) and the boundary conditions 
(10b-d) appropriate for regions R § and R-  respectively. 

Across the dividing line ofR + and R - ,  where # = it o and Iq~l < ~ -  c~, the matching conditions 
are the continuity of the eigenfunctions Ga and its normal derivative OG;J~?I~. The continuity 
of the second derivatives are then assured since both G~ and G~- fulfill the same differential 
equation (7). The matching conditions are: 

+ § 
for (15) 

and 

0G](/zS-, q~)/@=0a~-(#o, q))l@ for Iq)l<rc-c~. (16) 

The remaining boundary condition, eq. (10a) becomes 
+ + 3haz (#O,q))/~/~h=0 for ~--~<kol__<~. (17) 

It should be pointed out here that although the eigenfunctions are continuous, its derivatives 
may not exist along the edges. The singularity along the edge 0 = rc is built in by the representa- 
tion for G- (#, q~). The singularity along the edges, 0 =/3 and cp = ___ (re - e) can be ascertained by 
investigating the behavior of the solutions of the differential equations for G(#, ~o), eq. (7). 
In the neighborhood of an edge, i.e], I/~1 ~ 1 and I~1 ~ 1 with/2 = #0 - #, ~5 = re- ~ - q), eq. (7) can 
be approximated by the Laplace equation 

(1 -- #2)2 0; G/Off2 + Oz G/O(o 2 = 0 

in the first three quadrants of the fi-~ plane subjected to the boundary condition that 6hG/~?nh 
vanishes along the positive fi-axis and along the negative 0-axis. The solution G near the origin 
fi = (~ = 0 should behave as the real or the imaginary part of [fi(1 - # ~ ) -  a + i5] ~ for h = 1 or 0 
respectively [6]. The same result can be obtained by observing the three-dimensional corner 
directly: the surfaces of ~0 = u -  c~ and 0 = fl intersect at right angle and in the neighbourhood of 
th e edge away from the vertex, the solution behaves as that of a two-dimensional convex right 
corner. 

Along the interface of G + and G-,  i . e . , /~=#0=0 and (~>0, the normal derivative of G 
behaves as the real or the imaginary part of (qSi) -~ for h = 1 or 0 respectively. For either case, 
the behavior of G, is G, (# = #0, q~rc  - c~ - 0) ~(~z - c~ - ~0) -~. G, is singular near the edge but is 
square integrable for the appropriate interval of ~0, namely - r~ < ~0 < r~ for G § when/~ > #0 
and - (rc-c~) <q~<~-c~ for G- when #<#o.  

3.1. Reduction to Algebraic Equations 

Equations (15, 16 and 17) will now be reduced to a system of linear homogeneous algebraic 
equations for the unknowns A,,, B,,, Cj and Dj by the following procedure. 

For the boundary condition of the first kind (h = 0), eqs. (15) and (17) together define G § (Po, q~) 
for I~ol < re. For the boundary condition of the second kind (h = 1), eqs. (16) and (17) together 
define G~ (#o, ~0) for the same interval. Since G § is represented by the Fourier series of eq. (11), 
the combined equation for each case, i.e., eqs. (15 and 17) for h = 0  or eqs. (16 and 17) for h =  1, 
will be multiplied by an even component cos n o and integrated over the interval (-~z, rc). 
The result is an algebraic equation for the even coefficients A,, and Cj for each integer n, 

A"[~hP;"(#O)/t?#h][l+6o,]--(--1) h Z Cj[OhP~s~(--#o)/Oph]I~, = 0 
j = 0 , 1 . . .  

for n=0 ,  1,2... (18) 
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where 
1 1 "q~:2 

Ij, = - / cos vig O cos ngodgo 
�9 / - ~ /2  

= 4[1  +h6o,] / (2~),  vj=n 

2(-1) '[nh+vj(1-h)]  (ngO+h=) v j#n (19) 
= c o s  2 ' 

The remaining equation, i.e. eq. (16) for h = 0 or eq. (15) for h = 1, defines QhG-(#o, gO)/O# h for 
the interval - 4/2 < gO < 4/2. That equation will be multiplied by an even component cos Vk gO 
in the Fourier series for G- with Vk = (2k + 1 - h)=/4 and be integrated over the interval ( -  4/2, 
4/2). The result is 

Am[~a-h p;,,(i2o)/ O#1-hi lkm + (_ 1)h Ck[~l-h p;~(_120)/ (~itt-h] 
m = 0 , 1  . . . .  

4(1 + haok)/2rt = 0 

for k=O, 1, 2... (20) 

When the even components cos no and cos Vk gO are replaced by the odd components sin ngO 
and sin ~kgO respectively in the derivation of eqs. (18) and (20) from eqs. (15, 16 and 17), those 
two equations become the following two equations for the odd coefficients B,, and Dj. They 
are: 

B,[ShP~"(f-to)/Olth]-(-1) h Z Dj[OhPi]~s(--#o)/O#hlCJ, =0 
j =  1 , 2 . . .  

for n = 1, 2, ... (21) 
and 

m =  1 , 2 . . .  
B,~[Oa-hpsn(i2o)/O#1-h] Lkm+ (-- 1)h Dk [(~ 1 -hPgfVJ(--#o)/dltl-h] 4/(27t)= 0 

for k =  1, 2 . . . .  (22) 
where 

Lj, = sin ,Tjgo sin ngodgo 
- / 2  

4/(2rc) 9 j=n  
= (23) 

2[~j(1-h)+nh] 1),+ a n4+hr~ f j~n  
rc (92 - n 2 )  ( - sin ~ ,  

The eigenvalue problem is now uncoupled, with eqs. (18) and (20) for the even solutions and 
eqs. (21) and (22) for the odd solutions. The numerical solution to those homogeneous algebraic 
equations will be described in the next sub-section. 

3.2. Numerical Solutions 

To obtain the numerical solutions, the infinite cosine series in eq. (11), the even part of G~, 
will be truncated with maximum m = Me. Similarly the cosine series in eq. (17), the even part of 
G~-, will be truncated with maximumj = Jc. Likewise, Mc and Jc will be the maximums of n and k, 
respectively, so that eqs. (18) and (20) y i e l d / ~  + Jc + 2 linear homogeneous equations for the 
Mc+J~+ 2 constants Ao, Aa . . . . .  AMc and Co, Ca . . . . .  Cjo. These solutions are nontrivial if 2 
is a root of  the characteristic equation, 

A c (4) = det (Q) = 0 (24) 

where Q is an (M~ + Jc + 2) • (M~ + Jc + 2) square matrix. Its elements are the coefficients of the 
unknowns Ao, Aa, ..., A~ c, and Co, Ca ..... Cso in Mr 1 equations from eq. (18) with n=O, 1, 
.... M~ and Jc+ 1 equations from eq. (20) with k=0,  1, ..., J~. 
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Diffraction of a plane pulse by a three-dimensional corner 231 

The search for the eigenvalue 2 can be restricted to the half plane, real part 2 > -�89 because 
the eigenfunction is invariant with respect to the product 2(2 + 1) which is symmetric about  
).= -�89 Since the differential equation, eq. (7), and the boundary conditions, eqs. (10a-d), are 
self-adjoint, the product 2(2+ 1) must be real, i.e. 2(2+ 1 ) - i ( 2 +  1) = (2~2)()~+2+ 1) = 0. 
Therefore the eigenvalues will lie on the real axis with 2 = 2  > - � 8 9  or lie on the line, Re 2 =  
(2 + ~)/2 = -�89 For  given 2, it is shown in the next sub-section that the differential equation for 
Z((), eq. (16), does not admit a solution finite at the origin (~ = 0) when Re 2 < 0. The search for 
the eigenvalue 2 can therefore be restricted to the positive real axis, i.e., 2 =/i > 0. 

For given values of Mc and Ic, the eigenvalues are the roots of At(2)=0. The real positive 
roots of A c (2) = 0 can be located by numerical evaluation of A~ (2) as a function of real positive 2. 
When the derivative of A~(2) at a root is non zero, the coefficients A,n, Cj are proportional to the 
cofactors of the determinant, i.e., 

A,,=N-tQ1,M+I for M=O, 1,2,. . . ,M c (25) 

Cj =N-1Q1.Mc+I+~ for j = 0 , 1 , 2 , . . . , J ~  

where QI~ is the cofactor of the element qa~ of the determinant. The constant N is defined by the 
normalization condition, 

d#Jod(p[G~(#,O)]2 + d#] ~ dcp[G;(#,O)];=l (26) 

The equation for N is 

N2 7z ( 1 M~ 
= d# 2 [P;m(#)QX,m+l]2(l~-(~orn) 

/~0 m=O ] 

I 1 J~ d# Z [P~-~J(#) Q1,M~+I +j]z (1 + 6oj ) . (27) 
"~ 4 -  - # o  j=O  

Similarly for the odd solutions, the series in eqs. (11) and (17) will be truncated with maximum 
m = Ms and maximum j = J~ respectively. There will be M~ equations for eq. (21) and M s equa- 
tions for eq. (22). The roots of the characteristic equation yield the eigenvalues for the odd solu- 
tions. The ratios of the cofactors and the normalization condition of eq. (26) define the coeffi- 
cients Bt...BM~ and Dr...Ds~ in the eigenfunctions. 

It should be pointed out here that the convergence of the eigenvalues and eigenfunctions of 
the truncated problem has been assumed and the equivalence between the matching conditions 
of eqs. (15) and (16) and the matching of the Fourier coefficients is also assumed. Some con- 
fidence in these assumptions will be offered by the following numerical results. 

For the special case of a two-dimensional corner, namely ~ = re/2, fl = ~/2 in Fig. 2, the eigen- 
value problem can be solved exactly by choosing the edge of the corner as the 2-axis (Fig. 3). 

B 

Figure 3. A two-dimensional corner. 
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In spherical coordinates 0 and 3, the two sides are ~ = 0 and ~5 = 3rc/2: The eigenfunction can be 
written as 

Gz(O, ~5) = P i  2j/a (/7) sin [(2j/3)3+ hrc/2] (28) 

where/7=cos 0 and j = 0 ,  1, 2, . . . .  For h=0 ,  the solution corresponding to j = 0  is trivial. 
The eigenvalue 2 is defined by the condition that p-Zj/a should be finite at 0 = ~  or /7= - 1 .  
Instead of eq. (13), an equivalent expression for P)~-v(/7) is [5], 

P;V(fi) = 2-~(1 -fi2)~/2F(v-2, v + 2 +  1, v+ 1; X) (29) 

where 

v=2j/3 and X = ( 1 - / 2 ) / 2 .  

The power series representation for the hypergeometric function is divergent at X = 1 or 
/2 = - 1 unless the series has only finite number of terms, say k + 1 terms. The condition for 2 is 

v - 2 + k = 0  or 2jk=k+2j/3. (30) 

Forj=O, 1, 2, 3 . . . .  theeigenvaluesare20,k=0, 1, 2, 3, 2 __2 .... 2 __4 . . . . .  . . . . .  , h , k  = 

2, 3, ..., 24,k = 8, . . . .  For the case h = 0, '~O,k are not eigenvalues because those eigenfunctions 
are trivial. 

The numerical program developed for the general eigenvalue problem is tested by setting 
fl = zc/2 and ~ = re/2 and the eigenvalues between 0 and 3 for the boundary condition of the first 
and second kind (h = 0, 1) respectively are obtained for various combinations of Me, Jc, Ms and 
Js. For the combination of Me = 8, J~ = 4, Ms = 9 and Js = 5 the eigenvalues given by the numerical 
program are in agreement with the exact values of eq. (30) within 0.2~. When the numbers of 
M's and J's are increased, the accuracy improves. This is a confirmation of the procedure de- 
veloped in this paper and the numerical program for the eigenvalue problem. 

Since the eigenvalues of the truncated problem are assumed to converge as M and J increase 
simultaneously, their limits should be independent of the differences between M and J where 
M and J stand for M~, J~, or Ms, J~, i.e., the differences between the number of terms in the 
series for G + and that for G-.  This fact is also confirmed by all the available numerical results. 
Nevertheless, a rule for the optimum difference between M and J for a given M + J and its 
justification are presented in [7]. The required total number M + J for a given degree of ac- 
curacy (say 0 .2~ error in the eigenvalues) is decided by comparing the results with those with a 
larger M + J as described in [7]. 

For the corner of a cube, i.e., ~ = re/4 and fl = z/2, some of the eigenvalues and eigenfunctions 
can be found exactly by picking out those spherical harmonic functions, Pro" (#) exp (imp) with 
n < m, which fulfills the boundary conditions on the three faces of the corner. From the boun- 
dary condition on the top surface (/~ = 0) it is clear that all the odd integers are eigenvalues for the 
boundary condition of the first kind (h = 0) and all the even integers are eigenvalues for the 
second kind (h= 1). These exact eigenvalues are 

2 = m = 2 k + l - h  for k = 0 , 1 , 2 , 3 , . . . .  (31) 

Due to the boundary conditions on the two vertical surfaces, n has to be an even integer, there- 
fore, the eigenfunctions for each 2 are 

P~(#) sin (2j(o+hrc/2) with 2 j<  2 (32) 

where ~ = q~ + 3~/4, j = 1, 2 . . . .  for h = 0 and j = 0, 1, 2 . . . .  for h = 1. 
In the case of h=0,  eq. (32) implies that 2=  1 is not an eigenvalue because 2j > 2 even for the 

smallest j = 1. The smallest eigenvalue is therefore 2 = 3 and the corresponding eigenfunction 
is an even function, P~(/~)cos 2cp. Corresponding to 2=  5, there are two eigenfunctions: 
pz (#) cos 2~p is even and P54 sin 4(o is odd in q~. The multiplicity increases as 2 increases sub- 
jected to the inequality 2j < 2 in eq. (32). 

In the case of h=  1, the smallest eigenvalue is 2 = 0  and the corresponding eigenfunction 
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TABLE 1 

Eigenvalues between 0 and 3for a three-dimensional corner of a cube with boundary condition of the first kind, p = O, (h = 0). 

Even Odd 

0.453 

1.231 1.230 

1.783 

2.117 2.117 

2.515 2.514 

3.0 

TABLE 2 

Eigenvalues between 0 and 3for a three-dimensional corner of a cube with boundary condition of the second kind, Op/On = O, 
(h = 1). 

Even Odd 

0.0 

0.840 0.840 

1.206 

1.805 1.807 

2. 2. 

2.447 

2.814 2.814 

2.959 2.869 

(j = 0) is Po ~ (#) = 1. Again the multiplicity increases as 2 does. For  example at 2 = 4, there are 
two even eigenfunctions pO (#) and P~ (#) cos 4(p with j = 0, 2 and one odd eigenfunction P]  (#) 
sin 2~0 with j = 1. 

The non-integer eigenvalues will be located by the aforementioned numerical procedure. 
For  each eigenvalue so obtained, the first derivative of the characteristic determinant does not 
vanish, therefore, the corresponding coefficients Am, Cj in the even eigenfunctions are defined by 
eqs. (25 and 27) and the coefficients Bm, D~ in the odd eigenfunctions are defined likewise. 

All the eigenvalues between 0 and 3 are tabulated in tables 1 and 2 for the boundary condition 
of the first and of the second kind respectively. The coefficients A,,, C; or Bm, Dj for the boundary 
condition of the second kind are tabulated in [7]. 

4. Conical Solution for the Incidence of a Plane Pulse 

Fig. 4 shows a unit plane pulse incident on a corner of a cube, i.e., a = ~/4, fl = re/2. The restric- 
tion of/3 = n/2  is essential so that the solution outside the unit sphere is two-dimensional. The 
restriction ofe  = ~z/4 is not necessary. It is imposed to simplify the explanations of various regions 
and the explicit solutions [2] outside the unit sphere. The three edges are chosen as the three 
coordinate axes xj withj  = 2, 3, 4 so that the solution due to the diffraction byj- th  edge is appli- 
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cable to all three edges. The direction cosines of the normal to the incident pulse are designated 
as nj with nz 2 + n~ + n ] = 1. The equation for the plane of the incident pulse is 

H 0 = n2X2+n3.~3 q-n4X4 = 1 (33) 

with Xj = xJ(Ct). If the plane pulse hit the j-th edge first before hitting the vertex, nj will be 
negative. This happens when the incident pulse diffracted by the first corner of the cube is sub- 
sequently diffracted by the adjacent corners. For the incidence on the first corner nj's are non- 
negative, i.e., 

nj > 0, j = 2, 3, 4 .  (34) 

In order to avoid the complicated discussion for various cases when one, two, or all of the nj's 
are negative, the discussions in this section will be restricted to the case of eq. (34), i.e., for the 
incidence on the first corner of the cube. 

x 2 or  x 5 

~-o~gCg'#'" / 8  

SPHERE 

'o 

EFL D PLANE PULSE 

v u x 4 o r  x ! 

Figure  4. Ob l ique  incidence of a p lane  pulse on a th ree -d imens iona l  corner.  

The plane pulse is intercepted by the j-axis at X~ = 1~n j, and intersects the ~j-xj_ 1 plane along 
the line 

nj_l~j_l+njxj  = 1 (35) 

For convenience, all the quantities with subscript 1 and 5 are introduced and identified with 
those with subscript 4 and 2 respectively. 

The diffraction due to the j-th edge is confined inside the cone Gj with vertex at Xj on the xj 
axis, 

+(X)+~) ] (a--nj) .  G j: ( 1 - n i x  j) > [(xj_ 1) 2 - 2 ~ : ~ (36) 

The diffraction by the vertex of the corner is confined inside the unit sphere 

S -2 -2 -2 (37) �9 X2"3vX3"~-X4< 1 . 

Outside the unit sphere the solutions are given by the two-dimensional conical solutions of 
Keller and Blank�9 The appropriated solutions are summarized in the next sub-section�9 

4.1. Two-Dimensional Conical Solutions Outside the Unit Sphere 

The plane pulse will be reflected by the face, ~j = 0, (the yj_ 1 - Y j+ 1 plane) when nj > 0 and the 
plane of the reflected wave is 

pj-= n j _ l X j _ l - n j X j q - n j + l ~ j + l  = 1 . (38) 

Journal of Engineering Math., Vol. 6 (1972) 225-241 



Diffraction of a plane pulse by a three-dimensional corder 235 

Across the reflected wave i.e., from Pj > 1 to ~ <  1, the solution jumps from unity to 1 - ( -  1) h. 
Inside the cone Gj but outside and ahead of the unit sphere S, the solution is given by the two- 

dimensional conical coordinates ~ and q~ with 

- n  ~ - x j + l ( 1 - n 2 )  a- C j _  x j_,(1 2)~ and t/j = (39) 
1 - n j x j  1 - n~ y j  

~j + t/j = 1. The reflected wave Pj+ 1 in 4, t/ The cone Gj becomes the domain inside a unit circle, z 2 
variables becomes ~/j_ 1 ~j + t/t+ 1 t/j = ( 1 -  n2) ~ and is tangential to the unit circle at the point 
A + with polar coordinates (1, co +) where 

1/(1 - n i )  Q (40) co+ = arcsin[nj+ 2 

Similarly the reflected wave Pj_ 1 is tangential to the unit circle at the point A j- with polar 

~ " ~ ~ 0 ~  X i+ I/(et) 
4 • -I 

Ni§ 
il 

[Xi-l/(Ct] 
Figure 5. Section normal  to the i-th axis for h = 1. 

coordinates (1, rc + co+) as shown in Fig. 5. The boundary condition on the unit circle p j =  1, 
for p is 

p = l - ( - 1 )  h for c o f > 0 j > 0  and 3n/2>Oj>~+cof (41a) 
and 

p = l  for co++rc>0 j>co  + . (41b) 

The disturbance pressure which lies inside the cone Gj but ahead of the unit sphere, i.e. 
- -2  --2 --2 xj + 1 + xj + x j_ 1 > 1 and xj > n j, is given by the two-dimensional conical solution [2], 

1 (1 -/~z)x/3 
p = pj(pj, 0j) = - arctan 

rc 4~ cos 2 (0j+co f + ; ) _  (1+/~2) 

- ( -  1)--~h arctan (1 - /~z)~3  (42) 

rc 4/~ cos 2 ( 0 j _ c o ; -  ; ) _  (l+/~z) 

where/~ = {p j~ [1 + (1 -p2)~] }.~ and the arctangent lies in the first and second quadrants. 
In the domain common to adjacent cones, say cones Gj and Gj+ 1, but outside of the unit 

sphere S, the solution is 

p = pj (p~, 0j) + p~ +1 (Pj + 1, 0j + 1 ) - h (43) 

In the domain ahead of the two cones Gj and G j+ 1 and behind the reflected wave Pj_ 1, the solu- 
tion is 

p = 1 - ( -  1) h (44) 
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In the remaining domains outside the unit spherel i.e., when eqs. (42, 43, and 44) are not 
applicable, the solution is that of the incident pulse alone, which is 

p = 0  for H o > l  

p = l  for /40<0.  (45) 

Equations (42) to (45) define the solution outside the unit sphere and the boundary data F (#, (p) 
on the unit sphere due to the continuity of the solution. 

4.2. The Three-Dimensional Conical Solution 

As outlined in section 2, the conical solution inside the unit sphere is represented by the eigen- 
function expansions, 

p((, #, cp) = Z K ~ Zz (~) G~ (#, ~o) (46) 
z 

where 

( = r/(Ct) = (x~ + x 2 + x]) ~, x 4 = - (~ 

x2 = ((1 _#2)~ sin(cp- 3~/2) and xs = ~ ( 1 - f ) ~  cos @ -  3Tc/2). 

The eigenvalues 2s and the eigenfunction Gx are determined in section 3. The function Zx(~) 
is a solution of the differential equation (6), i.e., 

~2 (1 - {2)Z" (() + 2 (1 - (2) ~Z, (~) - 2 (2 + 1) Z (~) = 0 .  (47) 

The boundary conditions are Z(0) < oo and Z(1) = 1. The latter condition on the unit sphere 
= 1 permits the determination of the coefficients Ka from the boundary data F(#, cp) on the 

unit sphere without the knowledge of Zk(~). The equation for the coefficient Kz is 

f of K~ = �89 d# do F (#, (p) G + (#, cp) + �89 d# do F (#, cp) G~- (g, cp) (48) 
0 - ~  alp_ o J 7c+ct 

The factor �89 is due to the normalization condition of eq. (12b) for Gz in which the integration 
with respect to ~ is carried over only half the interval. In the numerical determination of K~ 
the double integral can be reduced to a sum of line integrals. For example, eq. (35) for an even 
eigenfunction becomes 

Kz = Z A , , P [ " ( # ) f  + (#)d# + c j e z ~ ( - k t ) f f  (#)d# (49) 
m=0,1 /~o j= ,1 - 1  

where 

.f x i q~/2 f +  (#) = �89 -= F(g, cp) cos rncpdcp, f f  (#) = �89 -e/z  F(#, cp) cos v/pdcp , 

and 
vj = (2j + 1 -- h) r~/q~. 

Similarly, the coefficient K z for an odd eigenfunction can also be written as a sum of line 
integrals. 

For the determination of the conical solution inside the unit sphere, it is necessary to con- 
struct the solution Zz(#) of the differential eq. (47), subjected to the boundary conditions at 

= 0 and ~ = 1. The solution is obtained numerically by the "shooting method". For Z~ to be 
finite at ~ = 0, the solution can be represented by the power series, 

Z (() = ao #z 1 + 42 +~---6- #2 + ... (50) 

By setting a o = 1, the differential equation can be integrated numerically from a small #0 (say 
0.001) with initial data 2x ((o) = (~ [1 + 2 (2 + 1)#~/(42 + 6)] and 2~((o) = ' ~ - ~  [ 1 + (.~ + 1) 
(2 + 2)(~/(42 + 6)]. The numerical integration for Zz(() is continued until # is close to 1 (say 
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0.99). For the determination of 2z(1), the values of 2~(~) and 2~(~) at the last station are matched 
with those given by the series solution of 1 -  (, i.e., 

Zx(~) = Zx(1 ){1+  ) 0 ( 2 + 1 ) ( 1 - ~ ) l o g ( 1 - ~ ) [ l + O ( l - ~ ) ] } + a l ( 1 - ~ ) { l + O ( 1 - ~ ) }  

(51) 
Since the problem is linear, the correct solution is Z~. (~) = Z4 (~)/2 a (1) and the correct value for 
ao in eq. (50), which is needed to start the numerical integration, is 1/Za(1). Thus for a given 
boundary data F(/~, p) on the unit sphere, the conical solution inside the unit sphere is defined. 

4.3. Numerical Examples 

A numerical program is listed in [8] for h = 1. For a given incident direction (n2, na, n4), the 
program computes (i) the solution in the appropriate regions outside the unit sphere as describ- 
ed  in sect. 4.1, (ii) the boundary data F (/~, p) on the unit sphere and the coefficients Kx in eq. (46) 
and (iii) the solution p(~, #, q~) inside the unit sphere as described in sect. 4.2. 

2 s  

O.E 

Fi 

-7 
0.5 1.0 1.5 

ure 6. Over  pressure  a long cons tan t  0 lines on  face O A D  (q~ = 3~/4) with plane pulse advanc ing  a long OB (1, 0, 0). 

L6  
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1.2 

IO  

0.8 

0.6 
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0 . 2  m 
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k v 
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o~ i.o 
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1.5 

Figure  7. Over  pressure  a long  cons tan t  ~0 lines on  face OAB (0 = n/2) and  a long  cons t an t  0 lines on face O B D  (q~ = 
- 37z/4). 
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Figures 6 and 7 show the pressure distribution on the three faces of a rigid corner of a cube 
due to the normal incidence of a plane acoustic pulse (n2 = 1, n3 = 0, n4 = 0). The boundary con- 
dition is of the second kind (h = 1). The discontinuities in the sJope of the pressure distribution 
indicate the crossing of a characteristic sphere or cone. The results confirm with less than 1 
variation the symmetry of the solution with respect to the plane bisecting the two faces OAB 
and OAD which are normal to the incident plane pulse. The value at the vertex is within 0.1 
of the value 8/7 which is predicted by the "mean-value" theorem [7, 9] to be the ratio of 4n to 
the solid angle outside the corner i.e. 4n (1 - ~). For the solution inside the unit sphere the cal- 
culations are performed with eigenvalues less than or equal to 3. When the calculations are 
performed with only eigenvalues less than or equal to 2 the result differs from those in the 
figures within 6~ .  
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Figure 8. Pressure signature received at points along the line 0 = n/2, ~p = ~ for plane wave incident at equal angles with 
the edges and with wave form of type I. 
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Figure 9. Pressure signature received at points along the line 0 = n/2, ~o = ~r for plane wave incident at equal angles with 
the edges and with wave form of type 2. 

Journal of Enoineering Math., Vol. 6 (1972) 225 241 



Diffraction of a plane pulse by a three-dimensional corner 239 
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Figure 10. Pressure signature received at points along line 0 = ~/2, q~ = ~ for pl_ane wave incident at equal angles with 
the edges and with wave form of type 3. 

5. Incidence of a Plane Wave 

An incident plane wave Pi can be represented in general as pi=O(s) with s=Ct-(n2x2+ 
n3x3 + n4x4)  where the wave form ~ is a given function of its phase s and nj's are the direction 
cosines. 

When the wave form is a Heaviside function, the diffraction due to the three-dimensional 
corner is given by the conical solution described in the preceding section. It will be designated 
as p* (r/(Ct), #, q)). The solution corresponding to a plane wave of wave form ~ (~) is given by the 
Stieltjes integral 

p(r,O, cp, t)= p* d0(~/) = ~. p* ~k(~/j+ a ) ,  O(t/J (52) 

The second form is employed in the numerical program in [8] for the computation of the solu- 
tion at points on the surface of the corner. 

In the evaluation of pressure load on structures due to the incidence of a sonic boom, the 
incident wave can be locally represented as a plane wave since the length of a structure is usually 
much smaller than the radius of curvature of the wave front. The wave form ~ is in general a 
sequence of a weak shock wave and an expansive wave or a compression wave as shown in the 
inserts in Figs. 8, 9 and 10. Numerical results shown in those figures are carried out for the 
waves incident at equal angles to the edges, i.e. n: = na = n4 = 1/x/3. The curves show the pressure 
signature at points r=0 ,  0.5, 1, 2 along the line dividing the top surface of the corner (#=0,  
~0 =~). 

The incident wave in Fig. 8 is a simple N-wave in sonic boom problems with front shock 
strength e. The length of the N-wave, which is 4, is nearly the length of an airplane. The unit 
length scale in the numerical examples is therefore of the order of hundreds of feet. As shown in 
the figure, the pressure signature at the vertex is ~ times the incident wave form in agreement 
with the theorem stated in [7.9]. At the point r = 0.5, the front part of the pressure signature is 
equal to 2e i.e., the same as a regular reflection and then decreases from the value of a regular 
reflection after the arrival of the diffracted waves from the edges and corner. Similar pheno- 
menon is observed for the pressure signature at r = 1 with a relative delay in the arrival of the 
diffracted waves. 

In Fig. 9, the front shock is split into two shock waves jointed by the expansion wave of 
thickness 0.3. Although the peak incident pressure is the same as that in the single shock, the 
peak pressure received at points r=0 .5  and 1.0 are nearly 2 5 ~  less than that in the case of 
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regular reflection. The peak pressure at the point r = 2.0 does reach the value of regular reflec- 
t ion i.e. 2s. 

In Fig. 10, the front shock is split into two shocks separated by an expansion wave of thick- 
ness 0.6. The peak pressure for all three points are now nearly 25% less than the value 2s in a 
regular reflection. 

Figs. 9 and 10 demonstrate that when the diffracted wave front arrives prior to the arrival 
of the peak incident wave, the local peak pressure can be much less than the value given by a 

�9 regular reflection. Since the length scale in the incident wave form is one quarter of the length 
of an airplane. The area on the surface of the corner where there is such a reduction in peak 
pressure is significant (of the order of hundreds of square feet). Additional examples are 
presented in [8]. 

6. Concluding Remarks 

In this paper the conical solution for the diffraction of a plane pulse by a three-dimensional 
corner is presented for boundary conditions of the first kind p = 0 and also for that of the 
second kind p~ = 0. By the decomposition of a plane wave to plane pulses, the solution for the 
diffraction of a plane wave is obtained by superposition of the conical solutions. 

In the construction of the conical solution by separation of variables, an eigenvalue problem 
in spherical angle variables is formulated and solved in sections 2 and 3. The technique for the 
solution of the eigenvalue problem is applicable to a more general shape of boundary on the 
unit sphere formed by two great circles of given longitudes and a horizontal circle of given 
latidude. 

The solutions of the eigenvalue problem in spherical angles for the conical problem remain 
the same and therefore can be used for potential or unsteady heat conduction problems, so 
long as the boundary conditions in the 0-q~ plane are the same. 

The solutions of the eigenvalue problem remain the same for a generalized conical solution 
in the construction of a general diffraction solution. When the boundary data on the unit 
sphere around the vertex of a three-dimensional corner is now a function of t in addition to the 
spherical angles 0 and q~, it can be written as a power series with respect to t, i.e., F (t, 0, ~0) = 
E 7 t r F~ (0, q0) for t >  0 where the summation is carried over a sequence of positive numbers, 
~; > 0. The solution inside the unit sphere canlikewise be written as p (t, r, 0, ~0) = 2;r t r p(r) (~, 0, q)). 
For each 7 the wave equation yields the governing equation for p(r)(ff, 0, ~0), the generalized 
conical solution, subjected to the boundary condition on the unit sphere p(~)(~, 0, q~) = Fy(O, ~o), 
while the boundary conditions on the surfaces of the corner remain the same as eqs. (3,4). 

Since the differential operators with respect to 0 and q~ are independent of 7, the correspond- 
ing eigenvalue problem in 0-q~ plane after the separation of the variable ~ is the same as that 
for 7 = 0, i.e., the conical problem. The solution p(~) can therefore be written as, p~)(~, 0, q0)= 
E~. K~ ) Z(] ) (~)Gz(/~, ~0). The eigenvalues 2's and the eigenfunctions G~(#, q~) are identical with 

1 imposed n L ~ ,  those obtained for 7 = 0 in section 3. With the boundary condition Z(] ) (1) = " o ~'~) 
the constants K~ ) are also related to the boundary data FT( #, 0) by the same equation, eq. (48), 
and can be determined by the same numerical program independent of 7. The appearance of 
occurs only in the differential equation for Z~)(~) which is 

d2 Z 2- dZ 
(2(1-~2)  ~ - +  2 ~ [ 1 + ( ? - 1 ) ~  ] ~ - -  [ y ( y - 1 ) ~ 2 + 2 0 ~ + l ) ] Z  = 0 .  

The boundary conditions are the same for all 7, i.e., Z(1)--  1 and Z(0) is finite. Z~)(() can be 
determined by the same procedure described in sect. 4.3 for y=0 .  

References 7 and 8 present more detail description of the analysis for the boundary condition 
of the second kind only. They contain more numerical examples and all the relevant numerical 
programs. 
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